近畿大学
医学部
平成23年度入学試験問題

数学

注意事項

1. 問題は、指示があるまで開かない。
2. 解答は必ず別に配布する解答用紙に記入すること。
（前期） 平成23年度入学試験 数 学（問題用紙）

© 問題は3問です。解答はすべて解答用紙に記入すること。

1. 座標平面上の2つの円を
 \[O_1 : x^2 + y^2 = 4r^2 \quad \text{と} \quad O_2 : (x-a)^2 + y^2 = r^2 \]
とする。ただし、\(r \)は正の定数であり、\(a \)は正の値をとっても変化する値である。
(1) 2円 \(O_1, O_2 \)が異なる2点で交わる場合を考える。このとき、2交点のうち1交点にある交点を \(P \)とすると
 i) \(a \)がとりうる値の範囲は \(a < r \) であり、点 \(P \)の \(x \)座標は \(v \)である。
 ii) 点 \(P \)の \(y \)座標が最大になるのは \(a = r \) のときであり、そのときの点 \(P \)の \(y \)座標は \(u \)である。
 また、このとき、2円 \(O_1, O_2 \)の共通部分の面積は \(\pi - k \) である。
(2) 2円 \(O_1, O_2 \)が外接する場合を考える。このとき、2円 \(O_1, O_2 \)の共通接線のうち、2円 \(O_1, O_2 \)との接点がともに第1象限にある共通接線を \(\ell \)とすると
 \(\ell \)がx軸と交わる点の \(x \)座標は \(v \)であり、\(\ell \)の方程式は \(y = k \cdot x + c \) である。

2. \(O \)を原点とする座標空間内に、図のような直方体 \(OADB-CPQR \)がある。
 \[\overrightarrow{OA} = \overrightarrow{a}, \quad \overrightarrow{OB} = \overrightarrow{b}, \quad \overrightarrow{OC} = \overrightarrow{c} \]
とおく。また、3点 \(A, B, C \)を頂点とする \(\triangle ABC \)の重心を \(G \)とする。
(1) 線分 \(DP \)を \(1:5 \) に内分する点を \(M \)とし、2点 \(M, G \)を通る直線と面 \(OBRC \)の交点を \(N \)とする。このとき
 i) \(\overrightarrow{OM} \)、\(\overrightarrow{MG} \)を、それぞれ、\(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \)で表して表せ。
 ii) \(\overrightarrow{MN} = s \overrightarrow{MC} \) を満たす \(s \)の値を求めよ。
 iii) \(\overrightarrow{ON} \)を、\(\overrightarrow{b}, \overrightarrow{c} \)で表して表せ。
(2) 線分 \(OC \)を \(t : 1-t \) に内分する点を \(L \)とする \((0 < t < 1) \)。このとき
 i) \(\overrightarrow{LB}, \overrightarrow{LG} \)を、それぞれ、\(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \)と \(t \)で表して表せ。
 ii) 3点 \(D, G, L \)が一直線上にあるように \(t \)の値を定めよ。

3. \(0 \leq a \leq 2 \)をみたす実数 \(a \)に対して、\(x \)の関数 \(f(x) = x^2 - (3a + 1)x + 2a^2 + 2a \)とし、区間 \(0 \leq x \leq 4 \)における \(f(x) \)の極値 \(f'(x) \)の定積分を \(S(a) = \int_0^4 |f(x)| \, dx \)とする。
(1) \(f(x) \)を因数分解して、\(f(x) = 0 \)をみたす \(x \)の値を求めよ。
(2) \(f(x) = 0 \)が区間 \(0 < x < 4 \)において異なる2つの解 \(a, \beta (a < \beta) \)をもととき
 \[\int_0^4 |f(x)| \, dx = F(4) - F(0) + 2\{ F(\alpha) - F(\beta) \} = F(4) - F(0) + \frac{(\beta-a)^3}{3} \]
がなりたつことを示せ。ただし、\(F(x) \)は関数 \(f(x) \)の原始関数（不定積分）である。
(3) \(0 < a < 1 \)のとき、\(S(a) \)を求めよ。また、\(1 < a < 2 \)のとき、\(S(a) \)を求めよ。
(4) \(a \)が区間 \(0 \leq a \leq 2 \)の値をとっても変化するとき、\(S(a) \)は区間 \(0 < a < 1 \)では単調に減少し、区間 \(1 < a < 2 \)では単調に増加することを示せ。また、\(S(a) \)の最小値とそのときの \(a \)の値を求めよ。