生物問題 Ⅰ

次の(A), (B)を読み、問1～問8に答えよ。解答はすべて所定の解答欄に記入せよ。

(A) 遺伝子組換え技術の進歩および細胞や組織、胚などの培養法の発達によって、目的に応じた遺伝子組換え生物が作製できるようになってきた。これらの技術と方法は、生体内の分子の変動や働きを定量化したり、観察したりする際にも用いられ、様々な生命現象を分子レベルで解き明かすために役立っている。遺伝子組換え技術を用いて、オウンクラゲ由来の蛍光タンパク質(GFP)をコードする遺伝子を細胞に導入し、GFPの蛍光で細胞を光らせるために、以下の実験を行った。

実験1：EcoRIとBamHIは、特定の塩基配列を認識して切断するア酵素である。温度の上下を繰り返してDNAを増やすイ法を用いて、EcoRIとBamHIの認識配列で両端が挟まれたGFP遺伝子を含むDNAを増幅した。

実験2：実験1で得たDNAをEcoRIとBamHIで切断した。

実験3：環状DNAのプラスミドは、目的のDNAを大腸菌や細胞の中に運ぶウとしての働きがある。実験に用いたプラスミドには、GFP遺伝子を細胞で発現させるために必要な“転写調節配列”と“プロモーター”（以後、2つをまとめて“プロモーター領域”と呼ぶ）、それに続いてEcoRIとBamHIの認識配列が順に挿入してある。このプラスミドをEcoRIとBamHIで切断した。

実験4：実験2と実験3で得たDNA断片を混合した後、エという酵素を使って切断部分をつなぎ合わせた。

実験5：実験4で作製した組換えプラスミドDNAを大腸菌に導入する操作を行った後、増殖した大腸菌から組換えプラスミドDNAを得た。
実験 6：実験 5 で得た組換えプラスミド DNA を細胞に導入し、数時間後に蛍光顕微鏡で観察すると、細胞内で GFP の蛍光が認められた。

問 1 文中の □ア□～□エ□に適切な語句を記入せよ。

問 2 実験 1 では、鉛型となる 2 本鎖 DNA、プライマー、熟耐性 DNA 合成酵素と 4 種類のスクリオチドを混ぜた溶液を、95℃で熟した後、55℃付近に温度を下げてから 72℃に温度を上げるサイクルを繰り返す。3段階に設定した各温度ではどのような反応が起こるか、解答欄の枠の範囲内で説明せよ。

問 3 下線部①の操作を行うと、プラスミドが導入された大腸菌と、導入されてなかった大腸菌が混在する。この中からプラスミドが導入された大腸菌を選別して増やすためには、前もってプラスミドに遺伝子操作を行い、それによって大腸菌を生育に有利な形質に転換すればよい。プラスミドが導入された大腸菌を選別して増やすための具体的方法を解答欄の枠の範囲内で述べよ。

問 4 ある遺伝子のプロモーター領域のあとに GFP 遺伝子をつないだ組換えプラスミドを新たに作製し、マウス ES 細胞（腎性幹細胞）に導入すると、GFP の蛍光が ES 細胞で観察された。一方、この ES 細胞から作られた心筋細胞、神経細胞あるいは静止細胞では GFP の蛍光が観察されなかった。以下の(1)と(2)の問いに答えよ。

(1) マウス ES 細胞は、初期胚のどの部分から取り出した細胞に由来するか、また、ES 細胞に特有な性質は何か、解答欄の枠の範囲内で説明せよ。

(2) ES 細胞で GFP の蛍光が観察されたのに対し、ES 細胞から作られた各種細胞で観察されなかったのは、プロモーター領域による GFP 遺伝子の転写調節が ES 細胞と各種細胞で違っていたためである。この違いについて、解答欄の枠の範囲内で説明せよ。
(B) 我々が手や足を思い通りに動かすことができるのを、脳からの命令が神経細胞を通じて筋肉に伝えられるからである。図1の模式図に示すような神経筋接合部に命令が伝えられると、太いフィラメントと細いフィラメントがすべり運動を起こすことと筋肉が収縮する。なお、太いフィラメントと細いフィラメントの主成分は、それぞれオとカというタンパク質である。神経細胞の膜には、イオンの濃度差に逆らって、ナトリウムイオンを細胞のキ側からク側へ、カリウムイオンを細胞のク側からキ側へケ輸送するナトリウムポンプが存在する。通常の状態では、細胞のク側が正に帯電するようにコが保たれている。

イオンチャネルの開閉によって神経細胞のコ変化が図1のシナプス前膜まで伝えられると、シナプス小胞から神経伝達物質であるアセチルコリンが放出されアセチルコリン受容体に結合する。この受容体はイオンチャネルでもあり、チャネルが開いて、イオンが流入することで筋肉を収縮させる。アセチルコリン受容体は、アセチルコリンの結合によってチャネルをすばやく開くが、結合したアセチルコリンを離すには比較的長い時間が必要である。脳から繰り返し送られる命令に従って、すばやく正しく筋肉を動かすために、図1のように多数の受容体分子がシナプス後膜に密に存在している。
問5 文中の □オ□ ～ □コ□ に適切な語句を記入せよ。

問6 ウサギの骨格筋から筋繊維を取り出して細胞膜だけを取り除いた筋の標本を作製した。この標本を弛緩状態から収縮させるには、ある物質とあるイオンが必要である。それぞれを解答欄の(a)と(b)に記入せよ。次に、収縮状態から弛緩状態にするにはどちらをどう変化させるとよいかを解答欄の(c)に記入せよ。

問7 骨格筋の筋原纖維のまわりには、イオンの濃度調節を行う特別な膜構造がある。その膜構造の名前と、そこに存在するポンプの名前とを用いて、筋収縮と弛緩を調節する仕組みについて、解答欄の枠の範囲内で説明せよ。

問8 筋肉は、脳から繰り返し送られる命令に正しく応答して、すばやく動くことができる。アセチルコリンが結合するとアセチルコリン受容体のチャネルはすばやく開くが、結合したアセチルコリンはすぐには離れられない。アセチルコリンが結合してチャネルが開いたアセチルコリン受容体は、その他直後にチャネルをどのような状態にするか、解答欄の枠の範囲内で説明せよ。
生物問題Ⅱ

次の文(A)〜(C)を読み、問1〜問6に答えよ。解答はすべて所定の解答欄に記入せよ。

問1 文中の[A]〜[K]に適切な語句を記入せよ。
（B）マウスの染色体数は40本であり、19対の常染色体と1対の性染色体からなる。
雌雄は性染色体により決められ、XとY染色体を1本ずつもつものは雄、2本の
X染色体をもつものは雌となる。雌のX染色体は母親に由来するが、雄は母親に
由来するX染色体（Xm）と父親に由来するX染色体（Xp）をもつ。雌の体細胞で
は、X染色体上の遺伝子の発現量を雄と等しくするために、XmまたはXpいずれ
かの染色体が不活性化されている。どちらの染色体が不活性化されるかは、あらか
じめ決められていない。一方、雄の生殖細胞では、発生の早い時期には片方のX
染色体が不活性化されているが、受精後12日目には両方のX染色体が活性化され
る。これにより、減数分裂後に生じたいずれの卵も活性化されているX染色体を
もつようになる。X染色体上の遺伝子は活性化されているX染色体から転写され
、不活性化されているX染色体からは転写されない。

問2 ある疾患はX染色体上の遺伝子の変異により引き起こされる。この遺伝子
は酵素Eをコードする。この遺伝子のある変異は酵素Eの活性を消失させる。
酵素Eの活性が低下したマウスは、この疾患を発症する。ただし、この
疾患は生殖機能には影響しない。図1はこの変異をもつマウスの交配により得
られた個体と、各世代の症状の程度を示している。発症した個体のうち、雌の
すべてが重症個体である理由と、雌で軽症個体と重症個体の両方があらわれる
理由を解答欄の枠の範囲内で説明せよ。

図1
問3 図1の軽症の雌の皮膚から細胞を1つずつ分離して培養し、単一の細胞に由来する細胞集団を6集団得た。また、非発症の雌および重症の雌についても同様の培養を行った。それぞれの細胞集団の酵素Eの活性を調べると、非発症の雌由来の集団は図2の（あ）、重症の雌由来の集団は図2の（い）のようにになった。軽症の雌由来の細胞集団における酵素Eの活性はどのようになるか。適切なものを図2の（う）〜（き）の中から選び、解答欄に記入せよ。グラフ内の0は酵素活性がないことを表す。縦軸は酵素Eの活性を、横軸の数字は各細胞集団を示す。

図2
問 4 下線部に、蛻光タンパク質をコードする遺伝子 F を X 染色体上に
もつマウスを用いて、生殖細胞における X 染色体の活性化の状態を調べた。
遺伝子 F をもつ雄（X^F Y）と片方の X 染色体に遺伝子 F をもつ雌（X^F X）との交
配により、X^F X^F, X^F X, X^F Y の遺伝子型をもつ胚を得た。それぞれの胚の受
精後 10〜13 日目の生殖細胞 1000 個を破砕し、蛻光タンパク質の量を測定し
た。その結果を示すと考えられる組み合わせを図 3 の(く)〜(す)の中から選び、解
答欄に記入せよ。縦軸は蛻光タンパク質の量、横軸は受精後の日数を表す。
(C) 発生における雌雄の違いは、受精後 12 日目前の生殖腺の体細胞に現れる。雌では Y 染色体上の遺伝子 Z の働きにより、生殖腺が精巣へ分化する。一方、Y 染色体のない雌の生殖腺は卵巣に分化する。受精後 12 日目には生殖細胞の発生にも雌雄差がみられ、雌の生殖細胞は減数分裂をおこすが、雄の生殖細胞は体細胞分裂の G1 期で停止する。生殖細胞の発生の雌雄差にあたえる生殖腺の影響を調べるために、図 4 に示す実験 1 ～ 6 を行った。実験 1 と実験 2 では、雌または雄の受精後 11 日目の生殖腺から取り出した生殖細胞を単独で培養した。実験 3 と実験 4 では、雌または雄の受精後 11 日目の生殖腺から取り出した生殖細胞を異性の生殖腺に移植した。実験 5 と実験 6 では、雌または雄の受精後 12 日目の生殖腺から取り出した生殖細胞を異性の生殖腺に移植した。2 日後に観察した結果、生殖細胞は図 4 に示すように G1 期で停止するか、減数分裂した。
問 5 受精後13日目の雌の生殖細胞を受精後12日目の雄の生殖腺に移植すると、
その生殖細胞はどうなるか。予想される結果と、その結果が得られる理由
を解答欄の枠の範囲内で記述せよ。

問 6 遺伝子Zの働きを受精後12日目の胚（XY個体）の生殖細胞のみでなくし
た。この生殖細胞を、受精後12日目の雌の生殖腺に移植した。この実験にお
いて予想される結果と、その結果が得られる理由を解答欄の枠の範囲内で記述
せよ。
生物問題 III

次の文(A), (B)を読み、問1～問6に答えよ。解答はすべて所定の解答欄に記入せよ。

(A) 純系の植物を自家受精して得られる子孫は、親と同じ形質を持つ。ここでは、異なる2つの純系の植物を交雑し、得られる植物を繰り返し自家受精させることによって新しい純系をつくり出す方法を考えてみよう。

二倍体の植物において、由来が異なる2種類の純系を交雑して得たF1世代の個体は、相同染色体の多くを座において遺伝子がヘテロ接合となる。そこで、対立遺伝子Aと対立遺伝子aを持つ純系の交雑を考えると、F1世代ではすべての個体がAaのヘテロ接合体になっている。また、F2世代の集団における各遺伝子型の個体数の割合は、AA：Aa：aa = 1：2：1になる。したがって、F2世代におけるホモ接合体AAとaaの出現率は合わせて50%になる。次に、F2世代のすべての個体を自家受精して十分量の種子を得る。すべての個体から得られた種子を同じ割合で混ぜたF3世代のホモ接合体の出現率はウになり、この操作を繰り返したのちのF10世代ではイになる。このように対象とする遺伝子座が1つの場合、第g世代(Fg世代; ただしg≧2)でのホモ接合体の出現率Q(%)は、Q = ウ × 100という式で表すことができる。次に、これらの集団における3つの遺伝子座のホモ接合の出現率について考える。これら3つの遺伝子座ではメンデルの独立の法則が成り立っており、F1世代ではそれぞれの座の遺伝子がいずれもヘテロ接合であるとする。このとき、これら3つの遺伝子座のすべてがホモ接合である個体の出現率は、F3世代でエになり、F6世代でようやく90%を超える。このように、自家受精の繰り返しによって新しい純系を得るには長い期間が必要である。

問1 文中のウ、イに入れるべき数値を計算し、解答欄に記入せよ。必要な場合には、四捨五入して小数点以下1けたで記せ。
問２　ウに入れるべき数式を解答欄に記入せよ。

問３　エに入れるべき数値を計算し、解答欄に記入せよ。ただし、答えは四捨五入して小数点以下１けたで記せ。

問４　自家受精の繰り返しによって純系を得るには長い期間が必要である。しかし、減数分裂後の未熟な花粉を培養し、得られる植物体の染色体数を倍加すれば、二倍体の純系を短期間で得ることができる。そこで、ある二倍体の植物において、3つの座の遺伝子型がそれぞれAA、BB、CCの個体と、aa、bb、ccの個体とを交雑し、F1個体を得た。AとB（またはaとb）は連鎖しており、組換え価は10％である。このF1個体の未熟な花粉を培養した場合、“aBC”という遺伝子の組合せを持つ植物体が得られる確率を計算し、解答欄に分数で記入せよ。
(B) ゲノム中には、CACACA・・・・のようにごく短い塩基配列（この場合には CA）が何回も繰り返されている部分がしばしばあり、マイクロサテライトと呼ばれている。相同染色体の同じ位置に存在するマイクロサテライトの塩基配列の繰り返し数は多様であるため、個体の識別や親子の判定に利用することができる。あるマイクロサテライトを含む DNA の領域を人工的に増幅し、得られた DNA をゲル電気泳動にかけると繰り返し数の違いが観察できる。たとえば、二倍体の生物個体の場合、相同染色体間で塩基配列の繰り返し数が異なれば 2 本のバンドが、同じであれば 1 本のバンドが観察される。

いま、ゲノム中の異なる領域にある 2 つのマイクロサテライトを用いて、ある木本植物の親子の判定をしようとしている。この植物は二倍体の被子植物で、昆虫などによって運ばれた別の個体の花粉によって受精がおこり、種子を 1 つだけ含む果実ができる。このとき、花粉を送り出した個体を花粉親と呼ぶ。1 本の親木（以後これを母樹と呼ぶ）から果実を 9 個採取し、花粉親を特定するために、2 つのマイクロサテライトの電気泳動像を解析した。その結果、母樹に隣接する花粉親 x, 花粉親 y, 花粉親 z との交雑によってつくられた果実はこの 9 個の中にそれぞれ 1 つずつ含まれていることが判明した。

問 5 花粉親の特定のためには、採取した果実のうちどの部分を用いなければならなかった。下の語句から適切なもの 1 つ選び、その記号を解答欄に記入せよ。

(4) 果柄 (6) 果皮 (8) 果肉 (2) 種皮 (6) 子葉

問 6 図 1 と図 2 は、9 個の果実(a〜i)について行ったマイクロサテライト 1 とマイクロサテライト 2 の電気泳動像である。マイクロサテライト 1 の電気泳動像では A〜E、マイクロサテライト 2 の電気泳動像では F〜I のバンドが観察された。表 1 は花粉親 x, 花粉親 y, 花粉親 z と母樹について観察されたバンドの一覧表である。この表中の右端の空欄①〜③には、x, y, z をそれぞれ花粉親とする果実が 1 つずつ入る。該当する果実を(a〜i)の中から選び、解答欄に記入せよ。また、空欄(a), (b)には母樹がもつバンドがそれぞれ 1 つまたは 2 つ入る。該当するバンドを A〜I の中から選び、解答欄に記入せよ。
図1 マイクロサテライト1

図2 マイクロサテライト2

表1

<table>
<thead>
<tr>
<th></th>
<th>マイクロサテライト1</th>
<th>マイクロサテライト2</th>
<th>それぞれを花粉親とする果実</th>
</tr>
</thead>
<tbody>
<tr>
<td>花粉親x</td>
<td>C</td>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>花粉親y</td>
<td>A, E</td>
<td>F</td>
<td>(2)</td>
</tr>
<tr>
<td>花粉親z</td>
<td>B, C</td>
<td>F, G</td>
<td>(3)</td>
</tr>
<tr>
<td>母 樹</td>
<td>(a)</td>
<td>(b)</td>
<td></td>
</tr>
</tbody>
</table>
生物問題 Ⅳ

次の文(A), (B)を読み, 問1～問8に答えよ。解答はすべて所定の解答欄に記入せよ。

(A) 光合成を行う原核生物である アが祖先は, 先カンブリア時代に原始海洋に出現した。その後, 原始的な アが核やミトコンドリアをもつ原始的な真核生物に共生して イという細胞小器官となり, 藻類が誕生した。

古生代のオルドビス紀からシルル紀にかけて藻類の一部の ウ類が最初の陸上植物へと進化した。その後, 陸上では エをもつシダ植物が発展をとげた。 エは, 水分, 無機塩類, 有機物の通道と植物体の機械的支持を行い, 陸上での生活に適した組織系と考えられている。

古生代のデボン紀には裸子植物が出現し, はじめて種子を形成した。種子は内部に胚や胚乳を含み, 裸子植物の胚乳は胚のう内の細胞(核相 n)が増殖することによって形成される。

被子植物は, 約 a年前にはじまる中生代に出現し, オとよばれる受精形式を獲得した。被子植物は新生代に入ると急速に繁栄し, 現在では約 b種の現存する被子植物が記載(記録)されている。この種数は, 知られている現在の全陸上植物の種数の約 90% を占め, 知られている現存の全生物の種数の約 15% にあたる。

問1 文中の ア～ オに適切な語句を記入せよ。

問2 文中の a, bに入れる最も近い数値を下から選び, それぞれ解答欄に記入せよ。

2, 5万, 25万, 250万, 2,500万, 2.5億, 25億
問 3 被子植物の胚乳形成は，下線部①の裸子植物の胚乳形成とは異なる。被子植物の胚乳形成の過程を，核相の変化に着目して，解答欄の枠の範囲内で記述せよ。

問 4 裸子植物と被子植物の胚乳形成の過程は異なるものの，胚乳形成のための重要な栄養が同じ供給源から運ばれてくる。その供給源として最も適切なものを選んで選び，その記号を解答欄に記入せよ。

(あ) 小胞子
(い) 大胞子
(う) 胞子体
(え) 雌性配偶子
(お) 雄性配偶子
(か) 雌性配偶体
(き) 雄性配偶体
(B) 個体群において、生まれた卵や子について、発育段階ごとに、その期間、死亡率、死亡要因などを明らかにして、時間とともに生存個体数が減少する過程を示した表は「カタログ」という。また、時間の経過とともに変化する生存個体数をグラフで示したものを生存曲線といい、ふつう、同時期に生まれた個体の総数を1000として、その後の個体数の減少を時間の経過を追って示す。生存曲線は、一般に図1のa～cに示す3つの型に大別される。

表1と表2は、昆虫が成虫になるまでの「カタログ」である。表1は、水田におけるミナミアオカメムシの個体群のものである。このカメムシの幼虫はイネの種子を摂食して育ち、成虫はイネの葉の表面に卵を産む。表2は、サトウキビ畑におけるイワサキクサゼミというセミの個体群のものである。イワサキクサゼミの幼虫は地下でサトウキビの根から栄養をとる。そして、5歳幼虫は地上に現れて成虫になり、サトウキビの葉の内部に卵を産む。
表1

<table>
<thead>
<tr>
<th>発育段階</th>
<th>期間(日)</th>
<th>当初個体数</th>
<th>死亡個体数</th>
<th>死亡率(%)</th>
<th>主な死亡要因</th>
</tr>
</thead>
<tbody>
<tr>
<td>卵</td>
<td>5</td>
<td>713</td>
<td>422</td>
<td>59.1</td>
<td>寄生バチ</td>
</tr>
<tr>
<td>1 齢幼虫</td>
<td>3</td>
<td>291</td>
<td>122</td>
<td>41.9</td>
<td>降 雨</td>
</tr>
<tr>
<td>2 齢幼虫</td>
<td>4</td>
<td>169</td>
<td>65</td>
<td>38.5</td>
<td>降 雨</td>
</tr>
<tr>
<td>3 齢幼虫</td>
<td>4</td>
<td>104</td>
<td>28</td>
<td>26.9</td>
<td>脱皮失敗</td>
</tr>
<tr>
<td>4 齢幼虫</td>
<td>5</td>
<td>76</td>
<td>25</td>
<td>32.9</td>
<td>脱皮失敗</td>
</tr>
<tr>
<td>5 齢幼虫</td>
<td>7</td>
<td>51</td>
<td>25</td>
<td>49.0</td>
<td>台 風</td>
</tr>
<tr>
<td>成 虫</td>
<td>—</td>
<td>26</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Keizir Kiritani and Fusao Nakasuji (Researches on Population Ecology 9巻143-152 頁 1967 年)より改変。

表2

<table>
<thead>
<tr>
<th>発育段階</th>
<th>期間(日)</th>
<th>当初個体数</th>
<th>死亡個体数</th>
<th>死亡率(%)</th>
<th>主な死亡要因</th>
</tr>
</thead>
<tbody>
<tr>
<td>卵</td>
<td>45</td>
<td>50842</td>
<td>5804</td>
<td>11.4</td>
<td>ア リ</td>
</tr>
<tr>
<td>1 齢幼虫</td>
<td>40</td>
<td>45038</td>
<td>43511</td>
<td>96.6</td>
<td>ア リ</td>
</tr>
<tr>
<td>2 齢幼虫</td>
<td>30</td>
<td>1527</td>
<td>632</td>
<td>41.4</td>
<td>カ ピ</td>
</tr>
<tr>
<td>3 齢幼虫</td>
<td>100</td>
<td>895</td>
<td>240</td>
<td>26.8</td>
<td>カ ピ</td>
</tr>
<tr>
<td>4 齢幼虫</td>
<td>150</td>
<td>655</td>
<td>245</td>
<td>37.4</td>
<td>カ ピ</td>
</tr>
<tr>
<td>5 齢幼虫</td>
<td>360</td>
<td>410</td>
<td>144</td>
<td>35.1</td>
<td>カ ピ</td>
</tr>
<tr>
<td>成 虫</td>
<td>—</td>
<td>266</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Yosiaki Itô and Masaaki Nagamine (Ecological Entomology 6巻273-283 頁 1981 年)より改変。ただし、各発育段階の期間はおおよその推定値。
問 5 文中の□□□に適切な語句を記入せよ。

問 6 ミナミアオカメムシの生存曲線は、図1のa～cのどの型にあてはまるか。表1の数値にもとづいて，a～cより選び，解答欄(1)に記号を記入せよ。さらに，どのように考えてそれを選んだかを，解答欄(2)の枠の範囲内で記述せよ。

問 7 ミナミアオカメムシの生存曲線と比較して，イワサキクサゼミの生存曲線のもつ特徴を解答欄の枠の範囲内で記述せよ。

問 8 イワサキクサゼミの生存曲線が，問7で答えた特徴をもつ理由を，各発育段階のイワサキクサゼミの生息する環境に着目して，解答欄の枠の範囲内で記述せよ。

生物問題は，このページで終わりである。