第3章 数列

3.1 等差数列と等比数列

3.1.1 数列と一般項

正の奇数を小さい順に並べると，1，3，5，7，… のような数列ができる．ここで
は，数を一列に並べたものを一般的に考えてみよう．

A 数列の表記

自然数1，2，3，4，…を，右の図のように
正方形形状に並べていく．このとき，上端に並ぶ
数を左から順に取り出すと，

1，4，9，16，… ①

のような数列ができる．

一般に，数を一列に並べたものを数列1といい，数列における各数を項という．
数列の項は，最初の項から順に第1項，第2項，第3項，… という，n番目の項
を第n項という．とくに，第1項を初項という．

数列①の初項は1で，第3項は9である．

練習 3.1 上の数列1，4，9，16，… の第2項と第4項をいえ．また，第5項を求めよ．

数列を一般的に表すには，次のように書く．

\[a_1，a_2，a_3，…，a_n，… \]

この数列を \(\{a_n\} \) と略記することもある．

1 項の個数が有限である数列を有限数列，無限である数列を無限数列ということがある．
第3章 数列

数列 \(\{a_n\} \) の第 \(n \) 項 \(a_n \) が \(n \) の式で表されるとき, \(n \) に \(1, 2, 3, 4, \cdots \) を順に代入すると, 数列 \(\{a_n\} \) の各項が得られる. この \(a_n \) を数列 \(\{a_n\} \) の一般項という.

前ページの数列 1 は, 一般項が \(n^2 \) の数列である.
[注意] たとえば, 一般項が \(n^2 \) の数列を, 数列 \(\{n^2\} \) と略記することもある.

例 3.1 一般項が \(a_n = 3n - 2 \) である数列 \(\{a_n\} \) の第 5 項までを求める.

\[
\begin{align*}
a_1 &= 3 \cdot 1 - 2 = 1, \\
a_2 &= 3 \cdot 2 - 2 = 4, \\
a_3 &= 3 \cdot 3 - 2 = 7, \\
a_4 &= 3 \cdot 4 - 2 = 10, \\
a_5 &= 3 \cdot 5 - 2 = 13
\end{align*}
\]

練習 3.2 一般項が次の式で表される数列 \(\{a_n\} \) について, 初項から第 5 項までを求めよ.

(1) \(a_n = 2n - 1 \)

(2) \(a_n = n(n+1) \)

(3) \(a_n = 2^n \)

B 数列の一般項を \(n \) の式で表す

例 3.2 (1) \(-1 \) と 1 が交互に並ぶ数列 \(-1, 1, -1, 1, \cdots \) の一般項を \(a_n \) として \(n \) の式で表すと \(a_n = (-1)^n \)

(2) 分母が分子より 1 大きい分数の数列 \(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \cdots \) の一般項を \(a_n \) として \(n \) の式で表すと \(a_n = \frac{n}{n+1} \)

練習 3.3 次のような数列の一般項 \(a_n \) を, \(n \) の式で表せ.

(1) 偶数 \(2, 4, 6, 8, \cdots \) の数列で符号を交互に変えた数列

\(-2, 4, -6, 8, \cdots \)

(2) 分母には奇数, 分母には 2 の累乗が順に現れる分数の数列

\(\frac{1}{2}, \frac{3}{4}, \frac{5}{8}, \frac{7}{16}, \cdots \)
3.1.2 等差数列

偶数の数列 $2, 4, 6, 8, \cdots$ や奇数の数列 $1, 3, 5, 7, \cdots$ では、各項が2ずつ増えていく。言い換えれば、ひとつ前の項との差が常に2で、一定になっている。このような性質をもつ数列について考えてみよう。

A 等差数列

たとえば、1から順に奇数が並ぶ

数列 $1, 3, 5, 7, \cdots$

は、1に次々と2をたすと得られる。

また、4に次々と−2をたすと、

$4, 2, 0, -2, \cdots$

のような数列が得られる。

一般に、初項に一定の数 d を次々たたして得られる数列を等差数列といい、その一定の数 d を公差という。

例 3.3 (1) 初項2，公差3の等差数列は，次のようにある

$2, 5, 8, 11, \cdots$

（2）等差数列 $15, 13, 11, 9, \cdots$ の公差を d とすると、

$15 + d = 13$

よって $d = 13 - 15 = -2$

練習 3.4 次のような等差数列の初めの5項を書け。

(1) 初項1、公差 5

(2) 初項20、公差 −4

練習 3.5 次の等差数列の公差を求めよ。また，□に適する数を求めよ。

(1) 1, 5, 9, □, □, \cdots \hspace{1cm} (2) 9, □, 3, 0, □, \cdots
B 等差数列の一般項

初項 a，公差 d の等差数列 $\{a_n\}$ では，a に d を次々とたすか

\[
\begin{align*}
a_1 &= a, \\
a_2 &= a + d, \\
a_3 &= a + 2d, \\
a_4 &= a + 3d, \\
\cdots
\end{align*}
\]

となり，次のことがいえる。

等差数列の一般項

初項 a，公差 d の等差数列 $\{a_n\}$ の一般項は

\[
a_n = a + (n-1)d
\]

例 3.4 初項 2，公差 3 の等差数列 $\{a_n\}$ の一般項は

\[
a_n = 2 + (n-1) \times 3
\]

すなわち $a_n = 3n - 1$

練習 3.6 次のような等差数列の一般項を求めよ．また，第10項を求めよ．

(1) 初項 3，公差 4

(2) 初項 10，公差 -5
例題 3.1 第 3 項が 10, 第 6 項が 1 である等差数列 \(\{a_n\} \) の初項と公差を求めよ。また、この数列の一般項を求めよ。

【解】 求める初項を \(a \), 公差を \(d \) とすると

\[
a_n = a + (n - 1)d
\]

第 3 項が 10 であるから
\[a + 2d = 10\] \(\cdots (1) \)

第 6 項が 1 であるから
\[a + 5d = 1\] \(\cdots (2) \)

(1), (2) を解くと
\[a = 16, \ d = -3\]

よって、一般項は
\[a_n = 16 + (n - 1) \times (-3)\]

すなわち
\[a_n = -3n + 19\]

(答) 初項 16, 公差 -3, 一般項 \(a_n = -3n + 19 \)

練習 3.7 公差が 3, 第 9 項が 25 である等差数列 \(\{a_n\} \) の初項を求めよ。また、一般項を求めよ。

練習 3.8 第 5 項が 20, 第 10 項が 0 である等差数列 \(\{a_n\} \) の初項と公差を求めよ。また、一般項を求めよ。
第3章 数列

C 第1項と第3項から等差数列を定める

例題 3.2 次の数列が等差数列であるとき、x の値を求めよ。
1, x, 8, …

【解】隣り合う2項の差が等しいから

\[x - 1 = 8 - x \]

が成り立つ。
よって、2x = 9 より \[x = \frac{9}{2} \]

[注意] 第2項のxは、第1項と第3項の相加平均 \(\frac{1+8}{2} \) である。

練習 3.9 次の数列が等差数列であるとき、x の値を求めよ。

(1) 3, x, 9, …
(2) 4, x, -5, …

練習 3.10 次の数列が等差数列であるとき、x の値を求めよ。

\[\frac{1}{12}, \frac{1}{x}, \frac{1}{6}, \ldots \]

一般には、次のことが成り立つ。

数列 a, b, c が等差数列 ⇐⇒ 2b = a + c
3.1.3 等差数列の和

初項 1，公差 4 の等差数列の初項から第 8 項までの和 S を求めるのに，次のように工夫して，\(S = 30 \times 8 \div 2 \) から求める方法がある。

\[
S = 1 + 5 + 9 + 13 + 17 + 21 + 25 + 29 \\
+ \quad S = 29 + 25 + 21 + 17 + 13 + 9 + 5 + 1 \\
\frac{2S = 30 + 30 + 30 + 30 + 30 + 30 + 30 + 30}{2} \quad \leftarrow \text{ たす順を逆にしている。}
\]

ここでは，この方法により，一般の等差数列の和の公式を求めよう。

A 等差数列の和の公式

初項 a，公差 d，第 n 項が l の等差数列において，初項から第 n 項までの和を S_n で表すとき,

\[
S_n = a + (a + d) + (a + 2d) + \cdots + (l - d) + l \quad \cdots (1)
\]

であり，たす項の順を逆にすると，S_n は次のようにも表される。

\[
S_n = l + (l - d) + (l - 2d) + \cdots + (a + d) + a \quad \cdots (2)
\]

1 と 2 の各辺をたすことにより，\(2S_n = n(a + l) \)

また，l は第 n 項であるから，$l = a + (n - 1)d$ と表される。

以上から，次の公式が得られる。

等差数列の和

等差数列の初項から第 n 項までの和を S_n とする。

1. 初項 a，第 n 項 l のとき
 \[S_n = \frac{1}{2} n(a + l) \]

2. 初項 a，公差 d のとき
 \[S_n = \frac{1}{2} n\{2a + (n - 1)d\} \]

項が n 個ある数列では，n を項数といい，第 n 項すなわち最後の項を末項という。

上の公式 1 は，初項 a，末項 l，項数 n の等差数列の和 S_n を表している。

例 3.5 (1) 初項 1，末項 19，項数 10 の等差数列の和 S は

\[S = \frac{1}{2} \cdot 10(1 + 19) = 100 \]

(2) 初項 1，公差 2 の等差数列の初項から第 n 項までの和 S_n は

\[S_n = \frac{1}{2} n\{2 \cdot 1 + (n - 1) \cdot 2\} = n^2 \quad \leftarrow n = 1, 2 \text{ などで確かめよう。} \]
練習 3.11 次の和を求めよ．

(1) 初項 2, 末項 10, 項数 15 の等差数列の和 S

(2) 初項 1, 公差 1 の等差数列の初項から第 n 項までの和 S_n

例題 3.3 次の等差数列の和 S を求めよ．

12, 15, 18, ･･･, 99

【解】この等差数列の初項は 12, 公差は 3 である．

項数を n とすると \[12 + 3(n - 1) = 99 \]

これを解くと \[n = 30 \]

よって \[S = \frac{1}{2} \cdot 30(12 + 99) = 1665 \]

練習 3.12 次の等差数列の和を求めよ．

(1) 3, 7, 11, ･･･, 75

(2) 102, 96, 90, ･･･, 6
3.1. 等差数列と等比数列

B 自然数の和，奇数の和

自然数の和，奇数の和は，等差数列の和を利用し，次のようになる．

自然数の和，奇数の和

\[
\begin{align*}
1 & : 1 + 2 + 3 + \cdots + n = \frac{1}{2}n(n + 1) \\
2 & : 1 + 3 + 5 + \cdots + (2n - 1) = n^2
\end{align*}
\]

例 3.6 (1) \[1 + 2 + 3 + \cdots + 10 = \frac{1}{2} \cdot 10(10 + 1) = 55\]

(2) \[1 + 3 + 5 + \cdots + 19 = 1 + 3 + 5 + \cdots + (2 \cdot 10 - 1) = 10^2 = 100\]

練習 3.13 次の和を求めよ．

(1) \[1 + 2 + 3 + \cdots + 30\]

(2) \[1 + 3 + 5 + \cdots + 55\]
第三章 数列

C 倍数に関する和

応用例題 3.1 1から100までの自然数について、次の和を求めよ。

(1) 5の倍数の和
(2) 5の倍数でない数の和

考え方
(1) \(5 + 10 + 15 + \cdots + 100 = 5(1 + 2 + 3 + \cdots + 20)\)
(2) \(1 + 2 + 3 + \cdots + 100 - (5 + 10 + \cdots + 100)\)

【解】(1) 求める和は
\[
\begin{align*}
5 + 10 + 15 + \cdots + 100 &= 5(1 + 2 + 3 + \cdots + 20) \\
&= 5 \times \frac{1}{2} \cdot 20(20 + 1) \\
&= 1050
\end{align*}
\]

(2) 求める和は
\[
\begin{align*}
1 + 2 + 3 + \cdots + 100 - (5 + 10 + 15 + \cdots + 100) &= \frac{1}{2} \cdot 100(100 + 1) - 1050 \\
&\quad \leftarrow (1) の結果を利用している \\
&= 5050 - 1050 = 4000
\end{align*}
\]

練習 3.14 1から100までの自然数について、次の和を求めよ。

(1) 3の倍数の和

(2) 3の倍数でない数の和
3.1.4 等比数列

たとえば、3に次々と2をかけるたび、
次の数列が得られる。

\[3, 6, 12, 24, \cdots \]

この数列では、隣り合う2項の比が常に一定になっている。
ここでは、このような性質をもつ数列について考えてみよう。

A 等比数列

初項に一定の数 \(r \) を次々とかけて得られる数列を等比数列といい、その一定の数 \(r \)
を公比という。\(^2\)

例 3.7 (1) 初項2、公比 \(-3\) の等比数列は、次のようなになる。

\[2, -6, 18, -54, \cdots \]

(2) 等比数列 \[\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \cdots \] の公比を \(r \) とすると、

\[\frac{1}{2}r = \frac{1}{4} \text{ から } r = \frac{1}{2} \]

練習 3.15 次のような等比数列の初めの5項を書け。

(1) 初項1、公比3
(2) 初項3、公比 \(-2\)
(3) 初項1、公比 \(\frac{1}{3}\)
(4) 初項 \(\frac{1}{2}\)、公比 \(-\frac{1}{2}\)

練習 3.16 次の等比数列の公比を求めよ。また、\[\square \]に適する数を求めよ。

(1) 1, 2, 4, \[\square \] \cdots
(2) 1, -2, 4, \[\square \] \cdots
(3) \[\square \], 8, 4, \[\square \] \cdots
(4) \[\square \], 3, -1, \[\square \] \cdots

\(^2\) 一般に、等比数列の初項と公比は0であってもよいが、本書で扱う等比数列は、初項も公比も0
でないものである。
第3章 数列

B 等比数列の一般項

初項 a，公比 r の等比数列 $\{a_n\}$ では，a に r を次々とかけるから

\[
\begin{align*}
a_1 &= a , \\
a_2 &= ar , \\
a_3 &= ar^2 , \\
a_4 &= ar^3 , \\
\ldots
\end{align*}
\]

となる。また，$r^0 = 1$ であるから，次のことがいえる。

等比数列の一般項

初項 a，公比 r の等比数列 $\{a_n\}$ の一般項は

\[a_n = ar^{n-1}\]

例 3.8 (1) 初項 3，公比 2 の等比数列 $\{a_n\}$ の一般項は

\[a_n = 3 \cdot 2^{n-1}\]

(2) 初項 -2，公比 $-\frac{1}{3}$ の等比数列 $\{a_n\}$ の一般項は

\[a_n = -2 \cdot \left(-\frac{1}{3}\right)^{n-1}\]

(3) 初項 3，公比 3 の等比数列 $\{a_n\}$ の一般項は

\[a_n = 3 \cdot 3^{n-1}\]

練習 3.17 次のような等比数列の一般項を求めよ。また，第5項を求めよ。

(1) 初項 1，公比 3 (2) 初項 2，公比 -3

(3) 初項 2，公比 2 (4) 初項 -3，公比 $\frac{1}{2}$

練習 3.18 次の等比数列の一般項を求めよ。

(1) $\frac{1}{2}，\frac{1}{4}，\frac{1}{8}，\frac{1}{16}，\ldots$ (2) 3，-3，3，-3，\ldots
3.1. 等差数列と等比数列

例題 3.4 第4項が24，第6項が96である等比数列 \{a_n\} について，初項と公比を求めよ。

【解】求める初項を \(a\) ，公比を \(r\) とする。

第4項が24であるから \(ar^3 = 24\) ・・・①

このとき，第5項は24r，第6項は24r^2である。

よって，24r^2 = 96 より \(r^2 = 4\)

これを解くと \(r = \pm 2\)

①から，\(r = 2\) のとき \(a = 3\)，\(r = -2\) のとき \(a = -3\)

(答) 初項3，公比2 または 初項-3，公比-2

練習 3.19 第2項が6，第4項が54である等比数列 \{a_n\} について，初項と公比を求めよ。また，第3項を求めよ。

C 第1項と第3項から等比数列を定める

例題 3.5 次の数列が等比数列であるとき，\(x\) の値を求めよ。

\[2, x, 5, \ldots\]

【解】 \(\frac{x}{2} = \frac{5}{x}\) より \(x^2 = 2 \times 5 = 10\) ・・・①

よって \(x = \pm \sqrt{10}\)

練習 3.20 次の数列が等比数列であるとき，\(x\) の値を求めよ。

\[3, x, 9, \ldots\]
第3章 数列

一般には，a, b, cが0でないとき，次のことが成り立つ。

数列 a, b, c が等比数列 \iff $b^2 = ac$

[注意] 上の a, b, c が正の数のとき，b は a と c の相乗平均である。

3.1.5 等比数列の和

初項1，公比2の等比数列の初項から第8項までの和 S を求めるのに，次のように工夫して，$S - 2S = 1 - 2^8$ から求める方法がある。

\[S = 1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 \]
\[2S = 2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 + 2^8 \] ← 和を2倍して，項を1つずつずらして引く。

ここでは，この方法により，一般の等比数列の和の公式を求めよう。

A 等比数列の和の公式

初項 a，公比 r の等比数列の初項から第 n 項までの和を S_n とするとき，S_n は次のようにして求められる。

\[S_n = a + ar + ar^2 + \cdots + ar^{n-1} \tag{1} \]

$r \neq 1$ のとき \quad \[rS_n = ar + ar^2 + \cdots + ar^{n-1} + ar^n \tag{2} \]

とすると，(1) - (2) から

\[S_n - rS_n = a - ar^n \]

すなわち

\[(1 - r)S_n = a(1 - r^n) \]

\[S_n = \frac{a(1 - r^n)}{1 - r} \]

$r = 1$ のとき

\[S_n = na \]

以上から，次の公式が得られる。

等比数列の和

初項 a，公比 r の等比数列の初項から第 n 項までの和 S_n は

\[r \neq 1 \text{ のとき } S_n = \frac{a(1 - r^n)}{1 - r} \quad \text{または} \quad S_n = \frac{a(r^n - 1)}{r - 1} \]

\[r = 1 \text{ のとき } S_n = na \]

[注意] $r < 1$ のとき $S_n = \frac{a(1 - r^n)}{1 - r}$, $r > 1$ のとき $S_n = \frac{a(r^n - 1)}{r - 1}$ を利用する。
例題 3.6 次のような等比数列の初項から第 n 項までの和 S_n を求めよ．

(1) 初項 3，公比 2
(2) 初項 1，公比 $\frac{1}{2}$

【解】(1) $S_n = \frac{3(2^n - 1)}{2 - 1} = 3(2^n - 1)$

$S_n = a \left(\frac{r^n - 1}{r - 1} \right)$

(2) $S_n = \frac{1}{2} \left(1 - \left(\frac{1}{2} \right)^n \right) = 2 \left(1 - \frac{1}{2} \right)^n = 2 \left(\frac{1}{2^n} \right)$

$S_n = a \left(\frac{1 - r^n}{1 - r} \right)$

練習 3.21 次の等比数列の初項から第 n までの和 S_n を求めよ．

(1) $1, 2, 2^2, 2^3, \ldots$

(2) $2, \frac{2}{3}, \frac{2}{3^2}, \frac{2}{3^3}, \ldots$
第3章 数列

応用例題 3.2 初項から第3項までの和が3，第2項から第4項までの和が−6となる等比数列 \(\{a_n\} \) の初項 \(a \) と公比 \(r \) を求めよ。

\[
\text{考え方} \quad ar + ar^2 + ar^3 = r(a + ar + ar^2) \text{ に着目する。}
\]

【解】 条件から

\[
\begin{align*}
\quad & a + ar + ar^2 = 3 \quad \cdots (1) \\
\quad & ar + ar^2 + ar^3 = -6 \quad \cdots (2)
\end{align*}
\]

(2)より

\[
\begin{align*}
\quad & r(a + ar + ar^2) = -6
\end{align*}
\]

①を代入して

\[
\begin{align*}
\quad & 3r = -6 \quad \text{よって} \\
\quad & r = -2
\end{align*}
\]

これを ① に代入すると

\[
\begin{align*}
\quad & a - 2a + 4a = 3
\end{align*}
\]

これを解いて

\[
\begin{align*}
\quad & a = 1 \quad (\text{答} \quad a = 1, \quad r = -2)
\end{align*}
\]

練習 3.22 初項から第3項までの和が7，第3項から第5項までの和が28となる等比数列 \(\{a_n\} \) の初項 \(a \) と公比 \(r \) を求めよ。
研究

複利計算

銀行などがお金を預かったり貸したりするときの、利息計算について考えてみよう。
たとえば、年利率 2% で a 円を 1 年間預金すると、1 年後には \((a \times 0.02) \) 円の利息がつく。したがって、元金 a 円と利息を合わせた元利合計 \(S_1 \) 円は、次の式で表される。

\[
S_1 = a + a \times 0.02 = a(1 + 0.02) = a \times 1.02
\]

\(S_1 \) 円を元金にしてもう 1 年間預けると、元利合計 \(S_2 \) 円は

\[
S_2 = (a \times 1.02) \times 1.02 = a \times 1.02^2
\]

となる。

のように、一定期間の終わりごとに、その元利合計を次の期間の元金とする利息の計算は、複利計算と呼ばれる。
年利率 2%、1 年ごとの複利で、毎年初めに a 円ずつ積み立てるとき、10 年間の元利合計 S 円を求めてみよう。
a 円を n 年間預けると、元利合計は a \times 1.02^n 円になる。
したがって、10 年間に積み立てたお金の元利合計 S 円は、次のようにになる。

\[
S = a(1.02 + 1.02^2 + 1.02^3 + \cdots + 1.02^{10})
\]

（）内は、初項 1.02、公比 1.02 の等比数列の和であるから

\[
S = a \times \frac{1.02(1.02^{10} - 1)}{1.02 - 1}
\]

1.02^{10} \approx 1.219 であるから \(S \approx 11.169a \) となる。a = 100000 のとき、10 年間の元利合計は、およそ 111 万 6900 円である。
3.1.6 補充問題

1 一般項が \(a_n = 3n - 2 \) で表される数列 \(\{a_n\} \) について、次の問いに答えよ。

(1) \(a_n \) を \(a_n = a + (n - 1)d \) の形に表すとき、\(a, d \) の値を求めよ。

(2) この数列において、100 は第何項に現れるか。

2 1 から 100 までの自然数のうち、3 で割ると 2 余る数の和を求めよ。

3 第 2 項が 3、第 5 項が 24 である等比数列 \(\{a_n\} \) の一般項を求めよ。ただし、公比は実数とする。
第2項が3，初項から第3項までの和が13である等比数列の初項と公比を求めよ。

【答】

1 (1) $a = 1, d = 3$ （2）第34項

2 1650

3 $a_n = 3 \cdot 2^{n-2}$ [初項をa，公比をrとすると，$ar = 3$，$3r^3 = 24$]

4 初項1，公比3 または 初項9，公比$\frac{1}{3}$
3.2 いろいろな数列

3.2.1 いろいろな数列の和

数列には，これまでに学んだ等差数列，等比数列のほかにも，いろいろなものがある。ここでは，いろいろな数列の和を求める方法を調べよう。

A 自然数の２乗の和

次のような1からnまでの自然数の2乗の和を求めてみよう。

\[S = 1^2 + 2^2 + 3^2 + \ldots + n^2 \]

それには，次の恒等式を利用する。

\[
\begin{align*}
 k^3 - (k - 1)^3 &= 3k^2 - 3k + 1 \\
 k = 1 & \quad 1^3 - 0^3 = 3 \cdot 1^2 - 3 \cdot 1 + 1 \\
 k = 2 & \quad 2^3 - 1^3 = 3 \cdot 2^2 - 3 \cdot 2 + 1 \\
 k = 3 & \quad 3^3 - 2^3 = 3 \cdot 3^2 - 3 \cdot 3 + 1 \\
 \ldots & \quad \ldots \\
 k = n & \quad n^3 - (n - 1)^3 = 3n^2 - 3n + 1
\end{align*}
\]

これからn個の等式を辺々加えると

\[
 n^3 = 3(1^2 + 2^2 + 3^2 + \ldots + n^2) - 3(1 + 2 + 3 + \ldots + n) + n
\]

すなわち

\[
 n^3 = 3S - 3 \times \frac{1}{2}n(n + 1) + n
\]

よって

\[
6S = 2n^3 + 3n(n + 1) - 2n = n(n + 1)(2n + 1)
\]

したがって，1からnまでの自然数の２乗の和は，次のようになる。

\[
1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{1}{6}n(n + 1)(2n + 1)
\]

例 3.9 1^2 + 2^2 + 3^2 + \ldots + 10^2 = \frac{1}{6} \times 10 \times (10 + 1) \times (2 \cdot 10 + 1)

\[
= \frac{1}{6} \times 10 \times 11 \times 21 = 385
\]
3.2. いろいろな数列

練習 3.23 次の和を求めよ。

(1) \(1^2 + 2^2 + 3^2 + \cdots + 20^2\)
(2) \(1^2 + 2^2 + 3^2 + \cdots + 30^2\)

B 和の記号 \(\sum\)

第 \(n\) 項が \(a_n\) である数列について，第 1 項から第 \(n\) 項までの和を，\(\sum_{k=1}^{n} a_k\) と書く。\(^3\) のように，\(k\) の代わりに別の文字を使ってもよい。

\[
\sum_{i=1}^{n} a_i = a_1 + a_2 + a_3 + \cdots + a_n
\]

[注意] \(\sum_{k=0}^{n} a_k\) とけば，数列 \(\{a_n\}\) の第 0 項から第 \(n\) 項までの和を表す。

例 3.10 (1) \(\sum_{k=1}^{n} k = 1 + 2 + 3 + \cdots + n\) \(\leftarrow a_k = k\) の場合

(2) \(\sum_{k=2}^{10} k^2 = 2^2 + 3^2 + 4^2 + \cdots + 10^2\) \(\leftarrow a_k = k^2\) で，第 2 項から第 10 項までの和

例 3.11 次の式は，いずれも和 \(2^2 + 3^2 + 4^2 + 5^2 + 6^2\) を表す。

\[
\sum_{k=2}^{6} k^2, \quad \sum_{i=2}^{6} i^2, \quad \sum_{k=1}^{5} (k + 1)^2
\]

\(^3\) 和を意味する英語 Sum の S に対応するギリシャ文字が \(\sum\) で「シグマ」を読む。
第 3 章 数列

練習 3.24 次の (1)〜(3) の式は例 3.10 ような和の形で書け。(4)、(5) の式は和の記号 ∑ を用いて書け。

(1) \[\sum_{k=1}^{n} (2k - 1) \]

(2) \[\sum_{k=2}^{8} 2^k \]

(3) \[\sum_{k=1}^{n-1} \frac{1}{k} \]

(4) \[2 + 3 + 4 + 5 + 6 \]

(5) \[3^2 + 5^2 + 7^2 + 9^2 + 11^2 + 13^2 \]

自然数の和と自然数の 2 乗の和は、次のように表される。

自然数に関する和の公式

\[
\begin{align*}
\sum_{k=1}^{n} k &= \frac{1}{2} n(n + 1), \\
\sum_{k=1}^{n} k^2 &= \frac{1}{6} n(n + 1)(2n + 1)
\end{align*}
\]

練習 3.25 次の和を求めよ。

(1) \[\sum_{k=1}^{20} k \]

(2) \[\sum_{k=1}^{40} k^2 \]
3.2. いろいろな数列

C 和の記号 ∑ の性質

項がすべて c である数列 \{a_n\} では、\(a_k = c\) であるから

\[
\sum_{k=1}^{n} a_k = c + c + c + \cdots + c = nc
\]

となる。したがって、次のことが成り立つ。

\[
\sum_{k=1}^{n} c = nc \quad \text{とくに} \quad \sum_{k=1}^{n} 1 = n
\]

また、2 つの数列 \{a_n\}, \{b_n\} と定数 p に対して

\[
(a_1 + b_1) + (a_2 + b_2) + (a_3 + b_3) + \cdots + (a_n + b_n) = (a_1 + a_2 + a_3 + \cdots + a_n) + (b_1 + b_2 + b_3 + \cdots + b_n)
\]

\[
pa_1 + pa_2 + pa_3 + \cdots + pa_n = p(a_1 + a_2 + a_3 + \cdots + a_n)
\]

となるので、\(\sum\) について次の性質が成り立つ。

\(\sum\) の性質

1. \[
\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k
\]

2. \[
\sum_{k=1}^{n} pa_k = p \sum_{k=1}^{n} a_k \quad \text{ただし、p は} k \text{に無関係な定数}
\]

[注意] \[
\sum_{k=1}^{n} (a_k - b_k) = \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} b_k \quad \text{も成り立つ。}
\]

\(\sum\) の性質や自然数の和の公式を利用して、数列の和を求めてみよう。

例 3.12 \[
\sum_{k=1}^{n} (4k + 3) = 4 \sum_{k=1}^{n} k + \sum_{k=1}^{n} 3
\]

\[
= 4 \times \frac{1}{2} n(n + 1) + 3n
\]

\[
= 2n(n + 1) + 3n
\]

\[
= n(2n + 5)
\]

\(\rightarrow n\{2(n+1)+3\}=n(2n+5)\)
第3章 数列

練習 3.26 次の和を求めよ。

(1) \[\sum_{k=1}^{n} (2k + 1) \]

(2) \[\sum_{k=1}^{n} (3k - 2) \]

例題 3.7 次の和を求めよ。

\[1 \cdot 3 + 2 \cdot 4 + 3 \cdot 5 + \cdots + n(n + 2) \]

【解】これは、第 k 項が \(k(k + 2) \) である数列の，初項から第 n 項までの和である。よって、求める和は

\[
\begin{align*}
\sum_{k=1}^{n} k(k + 2) &= \sum_{k=1}^{n} (k^2 + 2k) = \sum_{k=1}^{n} k^2 + 2 \sum_{k=1}^{n} k \\
&= \frac{1}{6} n(n + 1)(2n + 1) + 2 \times \frac{1}{2} n(n + 1) \\
&= \frac{1}{6} n(n + 1)(2n + 1) + \frac{1}{2} n(n + 1) \\
&= \frac{1}{6} n(n + 1)(2n + 7)
\end{align*}
\]
練習 3.27 次の和を求めよ。

(1) \(\sum_{k=1}^{n} (3k^2 - 7k + 4) \)

(2) \(\sum_{k=1}^{n} (k - 1)(k - 2) \)

練習 3.28 次の和を求めよ。

\[1^2 + 3^2 + 5^2 + \cdots + (2n - 1)^2 \]
第3章 数列

D 和の求め方の工夫

応用例題 3.3 次の和 S を求めよ。

$$ S = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \cdots + \frac{1}{n(n+1)} $$

考え方 恒等式 $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$ を利用する。

【解】 $S = \left(\frac{1}{1} - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \cdots + \left(\frac{1}{n} - \frac{1}{n+1} \right)$

$= 1 - \frac{1}{n+1} = \frac{n}{n+1}$

練習 3.29 恒等式 $\frac{1}{k(k+2)} = \frac{1}{2} \left(\frac{1}{k} - \frac{1}{k+2} \right)$ を利用して，次の和 S を求めよ。

$$ S = \frac{1}{1 \cdot 3} + \frac{1}{2 \cdot 4} + \frac{1}{3 \cdot 5} + \cdots + \frac{1}{n(n+2)} $$
応用例題 3.4 次の和 S を求めよ。

\[S = 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 2^2 + \cdots + 10 \cdot 2^9 \]

【解】

\[S = 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 2^2 + 4 \cdot 2^3 + \cdots + 10 \cdot 2^9 \]

\[2S = 1 \cdot 2 + 2 \cdot 2^2 + 3 \cdot 2^3 + \cdots + 9 \cdot 2^9 + 10 \cdot 2^{10} \]

の辺々を引くと

\[S - 2S = 1 + 2 + 2^2 + 2^3 + \cdots + 2^9 - 10 \cdot 2^{10} \]

\[-S = \frac{2^{10} - 1}{2 - 1} - 10 \cdot 2^{10} \]

よって

\[S = \frac{2^{10} - 1}{2 - 1} - 10 \cdot 2^{10} \]

したがって

\[S = 9 \cdot 2^{10} + 1 = 9 \times 1024 + 1 = 9217 \]

練習 3.30 一般項が $n \cdot 2^{n-1}$ で表される数列の，初項から第 n 項までの和 S_n を求めよ．
3.2.2 階差数列

数列 \(\{a_n\} \) の隣り合う 2 項の差をとって順に並べると，別の数列が得られる．この数列の一般項から，数列 \(\{a_n\} \) の一般項が求められることがある．

A 階差数列

右の図のように，自然数を正方形形状に並べていく．このとき，対角線上に並ぶ数を順に並べた数列

\[
1, 3, 7, 13, 21, \ldots
\]

の一般項を求める方法を考えよう．

この数列の隣り合う 2 項の差を順に並べると，次の数列が得られる．

\[
2, 4, 6, 8, \ldots
\]

一般に，数列 \(\{a_n\} \) の隣り合う 2 項の差

\[
a_{n+1} - a_n = b_n
\]

\((n = 1, 2, 3, \ldots)\)

を項とする数列 \(\{b_n\} \) を，数列 \(\{a_n\} \) の階差数列という．

数列 ① を \(\{a_n\} \)，数列 ② を \(\{b_n\} \) とすると，数列 \(\{b_n\} \) は数列 \(\{a_n\} \) の階差数列であり，第 6 項は \(b_6 = 2n \) であると考えられる．

このとき，数列 \(\{a_n\} \) の第 6 項は，次のようにして求められる．

\[
a_6 - a_5 = b_5 \quad \text{から} \quad a_6 = a_5 + b_5 = 21 + 10 = 31
\]

← \(b_5 = 2 \cdot 5 = 10 \)

練習 3.31 階差数列を考えて，次の数列の第 6 項，第 7 項を求めよ．

\[
1, 2, 5, 10, 17, \ldots
\]
3.2. いろいろな数列

B 階差数列から一般項を求める

数列 \(\{a_n\} \) の階差数列を \(\{b_n\} \) とすると

\[
\begin{align*}
a_2 - a_1 &= b_1 \\
a_3 - a_2 &= b_2 \\
a_4 - a_3 &= b_3 \\
&\cdots \\
a_n - a_{n-1} &= b_{n-1}
\end{align*}
\]

となり, \(n \geq 2 \) のとき

\[
a_n - a_1 = b_1 + b_2 + b_3 + \cdots + b_{n-1} = \sum_{k=1}^{n-1} b_k
\]

以上から, 次のことがいえる.

階差数列と一般項

数列 \(\{a_n\} \) の階差数列を \(\{b_n\} \) とすると

\[
b_n = a_{n+1} - a_n \quad (n = 1, 2, 3, \ldots)
\]

\(n \geq 2 \) のとき \(a_n = a_1 + \sum_{k=1}^{n-1} b_k \)

例題 3.8 次の数列の一般項 \(a_n \) を求めよ.

\[
1, 3, 7, 13, 21, \ldots
\]

【解】この数列の階差数列は \(2, 4, 6, 8, \ldots \)

その一般項を \(b_n \) とすると, \(b_n = 2n \) である.

よって, \(n \geq 2 \) のとき

\[
a_n = 1 + \sum_{k=1}^{n-1} 2k = 1 + 2 \times \frac{1}{2} (n-1)n \\leftarrow a_1 = 1, b_k = 2k
\]

すなわち

\[
a_n = n^2 - n + 1
\]

初項は \(a_1 = 1 \) なので, 上の \(a_n \) は \(n = 1 \) のときに成り立つ.

したがって, 一般項 \(a_n \) は

\[
a_n = n^2 - n + 1
\]
第3章 数列

練習 3.32 階差数列を利用して，次の数列の一般項 \(a_n \) を求めよ．

(1) 1, 2, 4, 7, 11, ···

(2) 1, 2, 5, 10, 17, ···

C 数列の和と一般項

数列 \(\{a_n\} \) において，初項 \(a_1 \) から第 \(n \) 項 \(a_n \) までの和 \(S_n \) が \(n \) の式で与えられているときに，一般項 \(a_n \) を求める方法を考えよう．

\[
S_n = a_1 + a_2 + a_3 + \cdots + a_{n-1} + a_n
\]

において

\[
a_1 + a_2 + a_3 + \cdots + a_{n-1} = S_{n-1}
\]

であるから，

\[
n \geq 2 \quad \text{のとき} \quad S_n = S_{n-1} + a_n , \quad S_1 = a_1
\]

がいえる．したがって，次のことが成り立つ．

数列の和と一般項

数列 \(\{a_n\} \) の初項 \(a_1 \) から第 \(n \) 項 \(a_n \) までの和を \(S_n \) すると

\[
n \geq 2 \quad \text{のとき} \quad a_n = S_n - S_{n-1}
\]

初項 \(a_1 \) は \(a_1 = S_1 \)
例題 3.9 初項から第 n 項までの和 S_n が，$S_n = n^2$ で表される数列 $\{a_n\}$ の一般項を求める．

【解】 $n \geq 2$ のとき

$$a_n = S_n - S_{n-1} = n^2 - (n - 1)^2 = 2n - 1$$

初項は $a_1 = S_1 = 1^2 = 1$

よって，$a_n = 2n - 1$ は $n = 1$ のときにも成り立つ．

したがって，一般項は $a_n = 2n - 1$

練習 3.33 初項から第 n 項までの和 S_n が，$S_n = n^2 + n$ で表される数列 $\{a_n\}$ の一般項を求めよ．

3.2.3 補充問題

5 次の数列の第 k 項を k の式で表せ．また，初項から第 n 項までの和 S_n を求めよ．

$$1, 1 + 2, 1 + 2 + 3, \cdots, 1 + 2 + 3 + \cdots + n, \cdots$$
第3章 数列

6 次の和を求めよ。

(1) \[\sum_{k=1}^{8} \{(k+1)(k+2) - k(k+1)\} \]

(2) \[\sum_{k=1}^{8} (\sqrt{k+1} - \sqrt{k}) \]

7 階差数列を利用して, 次の数列の一般項 \(a_n\) を求めよ。

\[2, 3, 5, 9, 17, \ldots \]

【答】

5 第 \(k\) 項 \(\frac{1}{2}k(k+1)\), \(S_n = \frac{1}{6}n(n+1)(n+2)\)

6 (1) 88 (2) 2

7 \(a_n = 2^{n-1} + 1 \quad \left[n \geq 2 \text{ のとき, } a_n = 2 + \sum_{k=1}^{n-1} 2^{k-1} \right] \)
3.3 数学的帰納法

3.3.1 漸化式
数列では、隣り合う2項間の関係と初項が与えれば、すべての項が定まる。
たとえば、初項3、公比2の等比数列 \(\{a_n\} \) は、次の2つの条件で定まる。

\[
\begin{align*}
1 & \quad a_1 = 3 \\
2 & \quad a_{n+1} = 2a_n \quad (n = 1, 2, 3, \ldots)
\end{align*}
\]
ここでは、このような条件から数列の一般項を求める方法を調べよう。

A 数列の漸化式と項
数列 \(\{a_n\} \) は、次の2つの条件 [1] [2] を与えると、\(a_2, a_3, a_4, \cdots \) が順に求められ、すべての項がただ1通りに定まる。

[1] 初項
[2] \(a_n \) から \(a_{n+1} \) を決める関係式 \((n = 1, 2, 3, \ldots) \)

例 3.13 次の条件 [1] [2] によって定まる数列 \(\{a_n\} \) の第2項と第3項

\[
\begin{align*}
1 & \quad a_1 = 1 \\
2 & \quad a_{n+1} = 2a_n + 3 \quad (n = 1, 2, 3, \ldots)
\end{align*}
\]

第2項は, \(a_2 = 2a_1 + 3 \) と \(a_1 = 1 \) から

\[
a_2 = 2a_1 + 3 = 2 \times 1 + 3 = 5
\]

第3項は

\[
a_3 = 2a_2 + 3 = 2 \times 5 + 3 = 13
\]

上の [2] のように、数列において前の項から次の項を決めるための関係式を漸化式と呼ぶ。今後とくに断らなくても、与えられた漸化式は \(n = 1, 2, 3, \ldots \) で成り立つものとする。

練習 3.34 次の条件によって定まる数列 \(\{a_n\} \) の第2項から第5項を求めよ。

(1) \(a_1 = 100, a_{n+1} = a_n - 5 \)
(2) \(a_1 = 2, a_{n+1} = 3a_n + 2 \)
第3章 数列

B 漸化式から一般項を求める (1)

等差数列と等比数列の漸化式は、それぞれ次の形をしている。

等差数列 \(\{a_n\} \) の漸化式は、\(a_{n+1} = a_n + d \) の形。

等比数列 \(\{a_n\} \) の漸化式は、\(a_{n+1} = ra_n \) の形。

\(\rightarrow \) \(d \) が公差

\(\rightarrow \) \(r \) が公比

練習 3.35 次の条件によって定まる数列 \(\{a_n\} \) の一般項を求めよ。

(1) \(a_1 = 2, \ a_{n+1} = a_n + 3 \)

(2) \(a_1 = 1, \ a_{n+1} = 2a_n \)

数列の漸化式が与えられた場合に、その一般項を求めてみよう。
漸化式が \(a_{n+1} = a_n + (n \text{ の式}) \) の形の場合は、107ページで学んだ階差数列を利用する方法で、一般項が求められることがある。
例題 3.10 次の条件によって定まる数列 \(\{a_n\} \) の一般項を求めよ。

\[
a_1 = 1, \quad a_{n+1} = a_n + 2^n
\]

【解】 条件より

\[
a_{n+1} - a_n = 2^n
\]

数列 \(\{a_n\} \) の階差数列の第 \(n \) 項が \(2^n \) であるから，

\[
n \geq 2 \quad \text{のとき} \quad a_n = a_1 + \sum_{k=1}^{n-1} 2^k
\]

\[
= 1 + 2(2^{n-1} - 1)
\]

\[
= 1 + 2^n - 2
\]

よって

\[
a_n = 2^n - 1
\]

初項は \(a_1 = 1 \) なので，上の \(a_n \) は \(n = 1 \) のときにも成り立つ．

したがって，一般項は \(a_n = 2^n - 1 \)

練習 3.36 次の条件によって定まる数列 \(\{a_n\} \) の一般項を求めよ。

\[
a_1 = 1, \quad a_{n+1} = a_n + 3^n
\]
第3章 数列

(2) 漸化式から一般項を求める (2)

次のような条件を満たす数列 \(\{a_n\}, \{b_n\} \) を考えよう。

\[
\begin{align*}
 b_n &= a_n + 2 \quad \cdots (1) \\
 b_{n+1} &= 3b_n \quad \cdots (2)
\end{align*}
\]

(2) により、数列 \(\{b_n\} \) は公比 3 の等比数列であるから、初項がわかりれば一般項 \(b_n \) がわかり、(1) から一般項 \(a_n \) が求められる。

一方、(1) から \(b_{n+1} = a_{n+1} + 2 \) となるので、(2) により

\[
 a_{n+1} + 2 = 3(a_n + 2) \quad \cdots (3)
\]

が成り立つ。逆に、(3) は (1) と (2) で表すことができる。

(3) を整理すると、次の漸化式が得られる。

\[
 a_{n+1} = 3a_n + 4 \quad \cdots (4)
\]

そこで、(4) の形の漸化式を (3) の形に変形する方法を調べよう。

(4) に対して、次の等式を満たす \(c \) を考える。

\[
 c = 3c + 4 \quad \cdots (5)
\]

(4) から

\[
 a_{n+1} - c = 3(a_n - c)
\]

(5) を解くと、\(c = -2 \) であるから、

\[
 c = -2
\]

を代入すると

\[
 a_{n+1} + 2 = 3(a_n + 2)
\]

より、(3) が得られた。

一般に、\(a_{n+1} = pa_n + q \) の形の漸化式は、等式 \(c = pc + q \) を満たす \(c \) を用いて、次のように変形できる。

\[
 a_{n+1} - c = p(a_n - c)
\]

練習 3.37 次の \(\square \) に適する数を求めよ。

(1) \(a_{n+1} = 2a_n + 3 \) を変形すると \(a_{n+1} + \square = 2(a_n + \square) \)

(2) \(a_{n+1} = 4a_n - 6 \) を変形すると \(a_{n+1} - \square = 4(a_n - \square) \)
例題 3.11 次の条件によって定まる数列 \(\{a_n\} \) の一般項を求めよ。

\[
a_1 = 1, \quad a_{n+1} = 3a_n + 4
\]

【解】漸化式を変形すると

\[
a_{n+1} + 2 = 3(a_n + 2)
\]

\[
b_n = a_n + 2 \quad \text{とするとき} \quad b_{n+1} = 3b_n
\]

よって，数列 \(\{b_n\} \) は公比 3 の等比数列で，初項は

\[
b_1 = a_1 + 2 = 1 + 2 = 3
\]

数列 \(\{b_n\} \) の一般項は

\[
b_n = 3 \cdot 3^{n-1} = 3^n
\]

したがって，数列 \(\{a_n\} \) の一般項は，\(a_n = b_n - 2 \) より

\[
a_n = 3^n - 2
\]

練習 3.38 次の条件によって定まる数列 \(\{a_n\} \) の一般項を求めよ。

(1) \(a_1 = 1, \quad a_{n+1} = 2a_n + 3 \)

(2) \(a_1 = 3, \quad a_{n+1} = 4a_n - 6 \)
第3章 数列

研究

\[a_{n+1} = p a_n + q \] を満たす数列の階差数列

次の漸化式 (1) を満たす数列 \(\{a_n\} \) の階差数列 \(\{b_n\} \) を考える。

\[a_{n+1} = 2a_n + 3 \quad \cdots (1) \]

(1) より

\[a_{n+2} = 2a_{n+1} + 3 \quad \cdots (2) \]

も成り立つ。\((2) - (1) \) から

\[a_{n+2} - a_{n+1} = 2(a_{n+1} - a_n) \]

ここで、\(a_{n+2} - a_{n+1} = b_{n+1} \), \(a_{n+1} - a_n = b_n \) であるから

\[b_{n+1} = 2b_n \]

したがって、階差数列 \(\{b_n\} \) は公比 2 の等比数列である。

一般に、漸化式 \(a_{n+1} = p a_n + q \) を満たす数列 \(\{a_n\} \) の階差数列は、公比 \(p \) の等比数列である。
3.3. 数学的帰納法

3.3.2 数学的帰納法

87ページでは次の等式を導いた。

\[1 + 3 + 5 + \cdots + (2n - 1) = n^2 \quad \cdots (A) \]

自然数は限りなくあるから、この事実をすべての \(n \) について確かめることはできない。ここでは、自然数 \(n \) に関する等式や不等式などがすべての自然数 \(n \) について成り立つ、と結論するための新しい証明法を学ぼう。

\[\text{A 数学的帰納法の原理} \]

自然数 \(n \) に関する等式 (A) について、次の [1] [2] を考えてみる。

[1] \(n = 1 \) のとき (A) が成り立つ。

[2] \(n = k \) のとき (A) が成り立つと仮定すると、

\[n = k + 1 \] のときも (A) が成り立つ。

\[n = 1 + 1 \] すなわち \(n = 2 \) のときも、(A) が成り立つ。

すると、\(n = 2 + 1 \) すなわち \(n = 3 \) のときも、(A) が成り立つ。

同様に \(n = 4, 5, 6, \ldots \) のときも (A) が成り立ち、すべての自然数 \(n \) について (A) が成り立つ。このような証明法を数学的帰納法という。

数学的帰納法

一般に、自然数 \(n \) に関する条件 (A) があるとき、

「すべての自然数 \(n \) について (A) が成り立つ」を証明するには、次の [1] [2] を示せばよい。

[1] \(n = 1 \) のとき (A) が成り立つ。

[2] \(n = k \) のとき (A) が成り立つと仮定すると、

\[n = k + 1 \] のときも (A) が成り立つ。
第3章 数列

B 等式の証明

数学的帰納法を用いて，自然数 \(n \) に関する等式を証明してみよう。

例題 3.12 数学的帰納法を用いて，次の等式を証明せよ。

\[1 + 2 + 3 + \cdots + n = \frac{1}{2} n(n + 1) \]

[証明] この等式を (A) とする。

[1] \(n = 1 \) のとき

左辺 = 1， 右辺 = \(\frac{1}{2} \cdot 1 \cdot (1 + 1) = 1 \)

よって，\(n = 1 \) のとき，(A) が成り立つ。

[2] \(n = k \) のとき (A) が成り立つ，すなわち

\[1 + 2 + 3 + \cdots + k = \frac{1}{2} k(k + 1) \]

であると仮定すると，\(n = k + 1 \) のときの (A) の左辺は

\[1 + 2 + 3 + \cdots + k + (k + 1) = \frac{1}{2} k(k + 1) + (k + 1) \]

\[= \frac{1}{2} (k + 1)(k + 2) \]

すなわち

\[1 + 2 + 3 + \cdots + k + (k + 1) = \frac{1}{2} (k + 1)((k + 1) + 1) \]

よって，\(n = k + 1 \) のときも (A) が成り立つ。

[1] [2] から，すべての自然数 \(n \) について (A) が成り立つ。 [証終]
練習 3.39 数学的帰納法を用いて、次の等式を証明せよ。

(1) $1 + 3 + 5 + \cdots + (2n - 1) = n^2$

(2) $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \cdots + n(n + 1) = \frac{1}{3}n(n + 1)(n + 2)$
C 不等式の証明

応用例題 3.5 n を 4 以上の自然数とするとき、次の不等式を証明せよ。

\[2^n > 3n \]

考え方 \(n \geq 4 \) であるから [1] では \(n = 4 \) のときに不等式が成り立つことを示す [2] では \(k \geq 4 \) としてよい。

[証明] この不等式を (A) とする。

[1] \(n = 4 \) のとき

左辺 = \(2^4 = 16 \), 右辺 = \(3 \cdot 4 = 12 \)

よって, \(n = 4 \) のとき, (A) が成り立つ。

[2] \(k \geq 4 \) として, \(n = k \) のとき (A) が成り立つ, すなわち

\[2^k > 3k \]

であると仮定する. 両辺に 2 をかけると

\[2^{k+1} > 6k \quad \cdots (1) \]

次に, \(k \geq 4 \) のとき

\[6k > 3(k + 1) \quad \cdots (2) \quad \leftarrow n = k + 1 \) のときの (A) の右辺が 3(k + 1)

を示す. \(k \geq 4 \) のとき

\[6k - 3(k + 1) = 3(k - 1) > 0 \]

よって, (2) も成り立つから, (1), (2) より

\[2^{k+1} > 3(k + 1) \]

したがって, \(n = k + 1 \) のときも (A) が成り立つ.

[1], [2] から, 4 以上のすべての自然数 \(n \) について (A) が成り立つ. [証終]
練習 3.40 は3以上の自然数とするとき，次の不等式を証明せよ。

\[2^n > 2n + 1 \]
第3章 数列

D 整数の性質の証明

応用例題 3.6 すべての自然数 \(n \) について, \(n^3 + (n + 1)^3 + (n + 2)^3 \) は9の倍数である. このことを, 数学的帰納法を用いて証明せよ.

考え方 9の倍数は, 整数 \(m \) を用いて9\(m \)と表される. 逆に, 整数 \(m \) を用いることで9\(m \)と表される数は9の倍数である.

[証明] \(n^3 + (n + 1)^3 + (n + 2)^3 \) は9の倍数である」を(A)とする.

[1] \(n = 1 \) のとき

\[
1^3 + 2^3 + 3^3 = 36
\]

よって, \(n = 1 \) のとき, (A)が成り立つ.

[2] \(n = k \) のとき (A)が成り立つと仮定する.

すなわち, 整数 \(m \) を用いて

\[
k^3 + (k + 1)^3 + (k + 2)^3 = 9m
\]

と表されると仮定する.

\(n = k + 1 \) のときを考えると

\[
(k + 1)^3 + (k + 2)^3 + (k + 3)^3
= 9m - k^3 + (k + 3)^3
= 9m - k^3 + (k^3 + 3k^2 \cdot 3 + 3k \cdot 3^2 + 3^3)
= 9(m + k^2 + 3k + 3)
\]

よって, \((k+1)^3 + (k+2)^3 + (k+3)^3 \) は9の倍数であるから, \(n = k + 1 \) のときも (A)が成り立つ.

[1][2]から, すべての自然数 \(n \) について (A) が成り立つ. [証終]
練習 3.41 すべての自然数 n について，$n^3 + 2n$ は3の倍数である．このことを，数学的帰納法を用いて証明せよ．
3.3.3 補充問題

8 次の条件によって定まる数列 \{a_n\}, \{b_n\} の第 4 項を，それぞれ求めよ。

\[a_1 = 1, \ b_1 = 0, \ a_{n+1} = a_n + b_n, \ b_{n+1} = 2b_n + 1 \ (n = 1, 2, 3, \ldots) \]

9 数学的帰納法を用いて，次の等式を証明せよ。

\[1^3 + 2^3 + 3^3 + \ldots + n^3 = \left\{ \frac{1}{2} n(n + 1) \right\}^2 \]
10 次の条件によって定まる数列 \(\{a_n\} \) がある。

\[
a_1 = 2, \quad a_{n+1} = 2 - \frac{1}{a_n} \quad (n = 1, 2, 3, \ldots)
\]

(1) \(a_2, a_3, a_4 \) を求めよ。

(2) 第 \(n \) 項 \(a_n \) を推測して，それを数学的帰納法を用いて証明せよ。
【答】

8 $a_4 = 5$, $b_4 = 7$

9 [証明] この等式を (A) とすると

[1] $n = 1$ のとき

左辺 $= 1^3 = 1$, 右辺 $= \left(\frac{1}{2} \cdot 1 \cdot (1 + 1)\right)^2 = 1$

よって，$n = 1$ のとき，(A) が成り立つ。

[2] $n = k$ のとき (A) が成り立つ．すなわち

$$1^3 + 2^3 + 3^3 + \cdots + k^3 = \left(\frac{1}{2} k(k + 1)\right)^2$$

であると仮定すると，$n = k + 1$ のときの (A) の左辺は

$$1^3 + 2^3 + 3^3 + \cdots + k^3 + (k + 1)^3 = \frac{1}{4} k^2(k + 1)^2 + (k + 1)^3$$

$$= \frac{1}{4} (k + 1)^2 \{k^2 + 4(k + 1)\}$$

$$= \left\{\frac{1}{2} (k + 1)(k + 2)\right\}^2$$

すなわち

$$1^3 + 2^3 + 3^3 + \cdots + (k + 1)^3 = \left[\frac{1}{2} (k + 1)\{ (k + 1) + 1\}\right]^2$$

よって，$n = k + 1$ のときも (A) が成り立つ。

[1] [2] から，すべての自然数 n について (A) が成り立つ． [証終]

10 (1) $a_2 = \frac{3}{2}$, $a_3 = \frac{4}{3}$, $a_4 = \frac{5}{4}$

(2) $a_n = \frac{n + 1}{n}$

[証明] この結論を (A) とすると．

[1] $n = 1$ のとき，$a_1 = \frac{1 + 1}{1} = 2$ であり，(A) が成り立つ。

[2] $n = k$ のとき，(A) が成り立つ．

すなわち $a_k = \frac{k + 1}{k}$ であると仮定すると，

$$a_{k+1} = 2 - \frac{1}{a_k} = 2 - \frac{k + 1}{k + 1} = \frac{k + 2}{k + 1} = \frac{(k + 1) + 1}{k + 1}$$

となり，$n = k + 1$ のときも (A) が成り立つ。

[1] [2] から，すべての自然数 n について (A) が成り立つ． [証終]
3.4 章末問題

3.4.1 章末問題A

1 第4項が14，第8項が30である等差数列がある。次の数は，この数列の項であるかどうかを調べよ。また，項であるときは第何項かを調べよ。

(1) 70 (2) 123

2 初項が60，末項が−30である等差数列の和が240であるとき，この数列の公差と項数を求めよ。

3 1日目に1円，2日目に2円，3日目に4円，4日目に8円，…というように，前日の2倍の金額を毎日貯金するとき，15日間での貯金の総額を求めよ。
4 初項が正の数である等比数列 \(\{a_n\} \) の, 第 2 項と第 4 項の和が 20 で, 第 4 項と第 6 項の和が 80 であるとき, 次のものを求めよ．

(1) 初項と公比

(2) 初項から第 10 項までの和

5 次の数列の第 \(k \) 項を \(k \) の式で表せ．また, その和を求めよ．

\[1, 1 + 3, 1 + 3 + 5, \cdots, 1 + 3 + 5 + \cdots + (2n - 1) \]
6 次の条件によって定まる数列 \(\{a_n\} \) の一般項を求めよ．

(1) \(a_1 = 0, \ a_{n+1} = a_n + 2n + 1 \ (n = 1, 2, 3, \ldots) \)

(2) \(a_1 = 1, \ a_{n+1} + a_n = 3 \ (n = 1, 2, 3, \ldots) \)

(3) \(a_1 = 2, \ 2a_{n+1} = a_n + 1 \ (n = 1, 2, 3, \ldots) \)
7 すべての自然数 n について，$7^n - 1$ は6の倍数である．このことを，数学的帰納法を用いて証明せよ．

3.4.2 章末問題 B

8 次のように自然数の列を，順に1個，2個，3個，･･･の群に分ける．

(1), (2, 3), (4, 5, 6), (7, 8, 9, 10), ･･･

(1) 第 n 番目の群の最初に並ぶ自然数を n の式で表せ．

(2) 第10番目の群に入るすべての自然数の和を求めよ．
9 項数 n の数列 $1-n, 2(n-1), 3(n-2), \ldots, n\cdot1$ がある。

(1) この数列の第 k 項を n と k を用いた式で表せ。

(2) この数列の和を求めよ。

10 数列 $\{a_n\}$ の初項から第 n 項までの和 S_n が，$S_n = 2a_n - 1$ であるとする。

(1) $a_{n+1} = 2a_n$ であることを示せ。

(2) 第 n 項 a_n を求めよ。
11 次の条件によって定まる数列 \(\{a_n\} \) の一般項を求めよ。

\[
a_1 = \frac{1}{2}, \quad \frac{1}{a_{n+1}} - \frac{1}{a_n} = 2(n + 1) \quad (n = 1, 2, 3, \ldots)
\]

12 \(a > 0 \) で \(n \) を自然数とする。数学的帰納法を用いて、次の不等式を証明せよ。

\[
(1 + a)^n \geq 1 + na
\]
13 すべての自然数 n について、$2^{2n-1} + 3^{2n-1}$ は 5 の倍数である。このことを、数学的帰納法を用いて証明せよ。

ヒント

9 (2) n は k に無関係な定数であることに注意する。
11 $b_n = \frac{1}{a_n}$ として、まず数列 $\{b_n\}$ の一般項を求めめる。
13 $n = k + 1$ のとき，$2^{2(k+1)-1} = 2^{2k+1} = 2^2 \cdot 2^{2k-1}$ などと変形する。
第3章 数列

【答】

1 (1) 第18項 (2) 項ではない

2 公差 −6，項数16

3 32,767円

4 (1) 初項2，公比2 (2) 2046

[初項をa，公比をrとすると $ar + ar^3 = 20，ar^3 + ar^5 = 80$ から $r^2 = 4，ar = 4$]

5 第k項 k^2，和 $\frac{1}{6}n(n+1)(2n+1)$

6 (1) $a_n = n^2 - 1$ (2) $a_n = \frac{(-1)^n + 3}{2}$ (3) $a_n = \left(\frac{1}{2}\right)^{n-1} + 1$

\[n \geq 2 \text{ のとき } a_n = 0 + \sum_{k=1}^{n-1} (2k+1) \quad (2) \quad a_{n+1} - \frac{3}{2} = -\left(a_n - \frac{3}{2}\right) \]

(3) $a_{n+1} - 1 = \frac{1}{2}(a_n - 1)$

7 $7^k - 1 = 6m$ (m は整数) と表されると仮定すると，

$7^{k+1} - 1 = 7 \cdot 7^k - 1 = 7(6m+1) - 1 = 6(7m+1)$

8 (1) $\frac{1}{2}(n^2 - n + 2)$ (2) 505

\[(1) \quad \frac{1}{2}(n-1)n+1 \quad \text{(2) 初項46，末項55，項数10の等差数列の和} \]

9 (1) $k(n-k+1)$ (2) $\frac{1}{6}n(n+1)(n+2)$

\[(2) \quad \sum_{k=1}^{n} k(n-k+1) = -\sum_{k=1}^{n} k^2 + (n+1) \sum_{k=1}^{n} k \]

10 (2) $a_n = 2^{n-1}$ 【(1) $a_{n+1} = S_{n+1} - S_n = 2a_{n+1} - 2a_n$ 】

11 $a_n = \frac{1}{n(n+1)} \left[b_n = \frac{1}{a_n} \text{ とおくと}，b_{n+1} - b_n = 2(n+1) \right]$

12 【(1 + a)$^k \geq 1 + ka$ が成り立つと仮定すると，

$(1 + a)^{k+1} \geq (1 + ka)(1 + a) = 1 + (k+1)a + ka^2 > 1 + (k+1)a$ 】

13 【$2^{2k-1} + 3^{2k-1} = 5m$ (m は整数) と表されると仮定すると，

$2^{2(k+1)-1} + 3^{2(k+1)-1} = 2^{2} \cdot 2^{2k-1} + 3^{2} \cdot 3^{2k-1} = 4 \cdot 2^{2k-1} + 9(5m - 2^{2k-1})$ 】